Aide en ligne avec WhatsApp*, un professeur est à vos côtés à tout moment! Essayez!
Un cours particulier à la demande!
Envoyez un message WhatsApp au 07 67 45 85 81 en précisant votre nom d'utilisateur.*période d'essai ou abonnés premium(aide illimitée, accès aux PDF et suppression de la pub)
Dans chacun des cas calculer la probabilité de l'événement $A\cup B$
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
- $p(A)=0,2$, $p(B)=0,5$ et $p(A\cap B)=0,1$
Intersection (A et B) et réunion (A ou B)
Soient A et B deux événements.
L'événement $A \cap B$ (lire A inter B) est l'ensemble des issues qui réalisent à la fois A et B.
Si $A \cap B =\oslash$, on dit que A et B sont incompatibles.
L'événement $A \cup B$ (lire A union B) est l'ensemble des issues qui réalisent A ou bien B, c'est à dire réalisant A ou bien réalisant B ou bien réalisant A et B.
$p(A\cup B)=p(A)+p(B)-p(A\cap B)$$p(A\cup B)=p(A)+p(B)-p(A\cap B)=0,2+0,5-0,1=0,6$
- $p(A)=0,6$, $p(B)=0,8$ et $p(A\cap B)=0,5$
$p(A\cup B)=p(A)+p(B)-p(A\cap B)=0,6+0,8-0,5=0,9$
- $p(A)=0,4$, $p(B)=0,2$ et $A$ et $B$ sont incompatibles.
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
exercices semblables
Si vous souhaitez vous entraîner un peu plus, nous vous conseillons ces exercices.