Aide en ligne avec WhatsApp*, un professeur est à vos côtés à tout moment! Essayez!
Un cours particulier à la demande!
Envoyez un message WhatsApp au 07 67 45 85 81 en précisant votre nom d'utilisateur.*période d'essai ou abonnés premium(aide illimitée, accès aux PDF et suppression de la pub)
Déterminer les limites suivantes en justifiant:
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
- $\displaystyle \lim_{x \rightarrow +\infty}3x^2-\dfrac{1}{x}$
limites usuelles
$\displaystyle \lim_{x \rightarrow +\infty}x^n=+\infty$ ($n\in \mathbb{N}^*$)
$\displaystyle \lim_{x \rightarrow +\infty}\dfrac{1}{x^n}=0$ ($n\in \mathbb{N}^*$)
$\displaystyle \lim_{x \rightarrow 0}\dfrac{1}{x^n}=\pm \infty$ ($n\in \mathbb{N}^*$)
Limites de la fonction exponentielle(vue en première)
$\displaystyle \lim_{x \rightarrow -\infty}e^x=0$
$\displaystyle \lim_{x \rightarrow +\infty}e^x=+\infty$ $\displaystyle \lim_{x \rightarrow -\infty}x^n=\pm \infty$ ($n\in \mathbb{N}^*$)
$\displaystyle \lim_{x \rightarrow -\infty}\dfrac{1}{x^n}=0$ ($n\in \mathbb{N}^*$)
$\displaystyle \lim_{x \rightarrow +\infty}\sqrt{x}=+ \infty$ ($n\in \mathbb{N}^*$)
Limites de la fonction $ln$ (chapitre fonction $ln$)
$\displaystyle \lim_{x \rightarrow 0^+}ln(x)=-\infty$
$\displaystyle \lim_{x \rightarrow +\infty}ln(x)=+\infty$
Il faut déterminer $\displaystyle \lim_{x \rightarrow +\infty}3x^2$ puis $\displaystyle \lim_{x \rightarrow +\infty}-\dfrac{1}{x}$$\displaystyle \lim_{x \rightarrow +\infty}3x^2=+\infty$ et $\displaystyle \lim_{x \rightarrow +\infty}-\dfrac{1}{x}=0$
On peut utiliser le tableau de valeurs de la calculatrice (MENU TABLE) pour afficher les valeurs de $3x^2-\dfrac{1}{x}$ pour des valeurs de $x$ très grandes en paramétrant dans SET, XSTART=1000, XEND=10000 et pas=1000 par exemple.
Ceci permet de valider le résultat obtenu avec les opérations sur les limites - $\displaystyle \lim_{x \rightarrow +\infty}\dfrac{1}{2x^2-4}$
- $\displaystyle \lim_{x \rightarrow +\infty} \dfrac{-3}{x^2}+2$
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
exercices semblables
Si vous souhaitez vous entraîner un peu plus, nous vous conseillons ces exercices.