Publications MATHS-LYCEE.FR

mémo+exercices corrigés+liens vidéos

L'essentiel pour réussir la première en spécialité maths

RÉUSSIR EN MATHS, C'EST POSSIBLE!
Tous les chapitres avec pour chaque notion:
- mémo cours
- exercices corrigés d'application directe
- liens vidéos d'explications.
Il est indispensable de maîtriser parfaitement les notions de base et leur application directe pour pourvoir ensuite les utiliser dans la résolution de problèmes plus complexes.

Plus d'infos

Aide en ligne avec WhatsApp*, un professeur est à vos côtés à tout moment! Essayez!
Un cours particulier à la demande!

Envoyez un message WhatsApp au 07 67 45 85 81 en précisant votre nom d'utilisateur.
*période d'essai ou abonnés premium(aide illimitée, accès aux PDF et suppression de la pub)
PDF reservé aux abonnés
Déterminer les limites suivantes en justifiant:
  1. $\displaystyle \lim_{x \rightarrow +\infty}3x^2-\dfrac{1}{x}$

    limites usuelles


    $\displaystyle \lim_{x \rightarrow +\infty}x^n=+\infty$ ($n\in \mathbb{N}^*$)
    $\displaystyle \lim_{x \rightarrow +\infty}\dfrac{1}{x^n}=0$ ($n\in \mathbb{N}^*$)
    $\displaystyle \lim_{x \rightarrow 0}\dfrac{1}{x^n}=\pm \infty$ ($n\in \mathbb{N}^*$)
    Limites de la fonction exponentielle(vue en première)
    $\displaystyle \lim_{x \rightarrow -\infty}e^x=0$
    $\displaystyle \lim_{x \rightarrow +\infty}e^x=+\infty$ $\displaystyle \lim_{x \rightarrow -\infty}x^n=\pm \infty$ ($n\in \mathbb{N}^*$)
    $\displaystyle \lim_{x \rightarrow -\infty}\dfrac{1}{x^n}=0$ ($n\in \mathbb{N}^*$)
    $\displaystyle \lim_{x \rightarrow +\infty}\sqrt{x}=+ \infty$ ($n\in \mathbb{N}^*$)
    Limites de la fonction $ln$ (chapitre fonction $ln$)
    $\displaystyle \lim_{x \rightarrow 0^+}ln(x)=-\infty$
    $\displaystyle \lim_{x \rightarrow +\infty}ln(x)=+\infty$
    Il faut déterminer $\displaystyle \lim_{x \rightarrow +\infty}3x^2$ puis $\displaystyle \lim_{x \rightarrow +\infty}-\dfrac{1}{x}$
    $\displaystyle \lim_{x \rightarrow +\infty}3x^2=+\infty$ et $\displaystyle \lim_{x \rightarrow +\infty}-\dfrac{1}{x}=0$


    On peut utiliser le tableau de valeurs de la calculatrice (MENU TABLE) pour afficher les valeurs de $3x^2-\dfrac{1}{x}$ pour des valeurs de $x$ très grandes en paramétrant dans SET, XSTART=1000, XEND=10000 et pas=1000 par exemple.
    Ceci permet de valider le résultat obtenu avec les opérations sur les limites
  2. $\displaystyle \lim_{x \rightarrow +\infty}\dfrac{1}{2x^2-4}$
    Il faut déterminer $\displaystyle \lim_{x \rightarrow +\infty}2x^2-4$
    $\displaystyle \lim_{x \rightarrow +\infty}2x^2=+\infty$ et par somme $\displaystyle \lim_{x \rightarrow +\infty}2x^2-4=+\infty$
  3. $\displaystyle \lim_{x \rightarrow +\infty} \dfrac{-3}{x^2}+2$
    Il faut déterminer $\displaystyle \lim_{x \rightarrow +\infty}x^2$
    $\displaystyle \lim_{x \rightarrow +\infty}x^2=+\infty$ et par quotient $\displaystyle \lim_{x \rightarrow +\infty}\dfrac{-3}{x^2}=0$

Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)

exercices semblables


Si vous souhaitez vous entraîner un peu plus, nous vous conseillons ces exercices.