Aide en ligne avec WhatsApp*, un professeur est à vos côtés à tout moment! Essayez!
Un cours particulier à la demande!
Envoyez un message WhatsApp au 07 67 45 85 81 en précisant votre nom d'utilisateur.*période d'essai ou abonnés premium(aide illimitée, accès aux PDF et suppression de la pub)
Une entreprise fabrique des appareils électroniques de haute technologie.
Le coût total de fabrication de $q$ appareils est $C(q)=q^2+40q+125$.
Le coût est exprimé en centaines d'euros avec $q\in[0;40]$.
On admet que chaque appareil fabriqué est vendu au prix unitaire de 7000 euros et que toute la production est vendue.
La figure ci-dessous, donne la courbe représentative de la fonction coût total dans un repère orthogonal.
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)
Le coût total de fabrication de $q$ appareils est $C(q)=q^2+40q+125$.
Le coût est exprimé en centaines d'euros avec $q\in[0;40]$.
On admet que chaque appareil fabriqué est vendu au prix unitaire de 7000 euros et que toute la production est vendue.
La figure ci-dessous, donne la courbe représentative de la fonction coût total dans un repère orthogonal.
- Exprimer la recette $R(q)$, en centaines d'euros en fonction de $q$.
- Tracer la représentation graphique de la fonction $R$ dans le repère ci-dessous.
- Exprimer le bénéfice $B(q)$, en centaines d'euros, en fonction de $q$.
- Résoudre graphiquement l'équation $B(q)=0$ et vérifier ensuite par le calcul que les solutions obtenues sont correctes.
On veut déterminer les abscisses des points pour lesquelles la recette est égale au coût de fabrication.Le bénéfice est nul lorsque $R(q)=C(q)$ donc les solutions de l'équation $B(q)=0$ sont les abscisses des points d'intersection de la courbe représentant la fonction $C$ et du segment représentant la fonction $R$.
donc $B(q)=0$ pour $q=5$ ou $q=25$
On peut contrôler l'exactitude des lectures graphiques en calculant l'image par $B$ de 5 puis de 25.
$B(5)=-5^2+30\times 5-125=-25+150-125=0$ et $B(25)=-25^2+30\times 25-125=-625+750-125=0$ - En utilisant la question précédente et le graphique, déterminer la quantité d'appareils à produire pour que l'entreprise ne soit pas en déficit.
Il faut déterminer les valeurs de $q$ pour lesquelles on a un bénéfice positif soit $B(q)>0$ donc pour lesquelles $R(q)$ est supérieur ou égal à $C(q)$Graphiquement, les solutions de l'inéquation $B(q)\geq 0$, c'est à dire de $R(q)\geq C(q)$ sont les abscisses des points de la courbe représentant $R$ situés au-dessus de la courbe représentant $B$ (zone en pointillés bleus sur le graphique)
On a donc $R(q)\geq C(q)$ pour $q\in [5;25]$ (zone en pointillés verts sur le graphique)
Attention les fonctions ci-dessus sont désactivées en mode "visiteur", créez un compte MATHS-LYCEE.FR (gratuit)